122 research outputs found

    The Origin of Enhanced Activity in the Suns of M67

    Full text link
    We report the results of the analysis of high resolution photospheric line spectra obtained with the UVES instrument on the VLT for a sample of 15 solar-type stars selected from a recent survey of the distribution of H and K chromospheric line strengths in the solar-age open cluster M67. We find upper limits to the projected rotation velocities that are consistent with solar-like rotation (i.e., v sini ~< 2-3 km/s) for objects with Ca II chromospheric activity within the range of the contemporary solar cycle. Two solar-type stars in our sample exhibit chromospheric emission well in excess of even solar maximum values. In one case, Sanders 1452, we measure a minimum rotational velocity of vsini = 4 +/- 0.5 km/s, or over twice the solar equatorial rotational velocity. The other star with enhanced activity, Sanders 747, is a spectroscopic binary. We conclude that high activity in solar-type stars in M67 that exceeds solar levels is likely due to more rapid rotation rather than an excursion in solar-like activity cycles to unusually high levels. We estimate an upper limit of 0.2% for the range of brightness changes occurring as a result of chromospheric activity in solar-type stars and, by inference, in the Sun itself. We discuss possible implications for our understanding of angular momentum evolution in solar-type stars, and we tentatively attribute the rapid rotation in Sanders 1452 to a reduced braking efficiency.Comment: accepted by Ap

    The ultraviolet variability of the T Tauri star RW Aurigae

    Get PDF
    Between 1978 and 1979 the visible brightness of RW Aurigae increased by 0.9 mag. During this time (1) CIV and SiIV increased by factors of 2 to 4 while the lower ionization lines remained unchanged; (2) the fluorescent OI line increased by a factor of 8; (3) the shell spectrum changed from emission to absorption; and (4) the ultraviolet continuum brightened by 2.3 mag. On a time scale of a week the continuum varied by as much as 0.8 mag., but the MgII emission lines showed no variability over 10 percent. An active chromosphere, transition region, and envelope cooled by mass loss are hypothesized in order to explain the ultraviolet observations of RW Aur

    UV chromospheric and circumstellar diagnostic features among F supergiant stars

    Get PDF
    A survey of F supergiant stars to evaluate the extension of chromospheric and circumstellar characteristics commonly observed in the slightly cooler G, K, and M supergiant is discussed. An ultraviolet survey was elected since UV features of Mg II and Fe II might persist in revealing outer atmosphere phenomena even among F supergiants. The encompassed spectral types F0 to G0, and luminosity classes Ib, Ia, and Ia-0. In addition, the usefulness of the emission line width-to-luminosity correlation for the G-M stars in both the Ca II and Mg II lines is examined

    Estimates of Active Region Area Coverage through Simultaneous Measurements of He I λλ\lambda\lambda 5876 and 10830 Lines

    Get PDF
    Simultaneous, high-quality measurements of the neutral helium triplet features at 5876~\AA\ and 10830~\AA, respectively, in a sample of solar-type stars are presented. The observations were made with ESO telescopes at the La Silla Paranal Observatory under program ID 088.D-0028(A) and MPG Utility Run for FEROS 088.A-9029(A). The equivalent widths of these features combined with chromospheric models are utilized to infer the fractional area coverage, or filling factor, of magnetic regions outside of spots. We find that the majority of the sample is characterized by filling factors less than unity. However, discrepancies occur among the coolest K-type and warmest and most rapidly rotating F-type dwarf stars. We discuss these apparently anomalous results and find that in the case of K-type stars they are an artifact of the application of chromospheric models best suited to the Sun than to stars with significantly lower TeffT_\mathrm{eff}. The case of the F-type rapid rotators can be explained with the measurement uncertainties of the equivalent widths, but they may also be due to a non-magnetic heating component in their atmospheres. With the exceptions noted above, preliminary results suggest that the average heating rates in the active regions are the same from one star to the other, differing in the spatially integrated, observed level of activity due to the area coverage. Hence, differences in activity in this sample are mainly due to the filling factor of active regions.Comment: Accepted for publication in The Astrophysical Journa

    Second Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, volume 1

    Get PDF
    Solar and stellar atmospheric phenomena and their fundamental physical properties such as gravity, effective temperature and rotation rate, which provides the range in parameter space required to test various theoretical models were investigated. The similarity between solar activity and stellar activity is documented. Some of the topics discussed are: atmospheric structure, magnetic fields, solar and stellar activity, and evolution

    The Mg 2 h and k lines in a sample of dMe and dM stars

    Get PDF
    Both Mg II h and k line fluxes are presented for a sample of 4 dMe and 3 dM stars obtained with the IUE satellite in the long wavelength, low dispersion mode. The observed fluxes are converted to stellar surface flux units and the importance of chromospheric non radiative heating in this sample of M dwarf stars is intercompared. In addition, the net chromospheric radiative losses due to the Ca II H and K lines in those stars in the sample for which calibrated Ca II H and K line data exist are compared. Active region filling factors which likely give rise to the observed optical and ultraviolet chromospheric emission are estimated. The implications of the results for homogeneous, single component stellar model chromospheres analyses are discussed

    Combined ultraviolet studies of astronomical sources

    Get PDF
    Ultraviolet studies of astronomical sources are discussed. Some studies utilized IVE data. Non-radiative shock at the edge of the Cygnses Loop, stellar flares, local interestellar medium, hot galaxies, stellar mass ejection, contact binaries, double quasars, and stellar chromosphere and coronae are discussed

    Simultaneous Multi-Wavelength Observations of Magnetic Activity in Ultracool Dwarfs. I. The Complex Behavior of the M8.5 Dwarf TVLM513-46546

    Get PDF
    [Abridged] We present the first simultaneous radio, X-ray, ultraviolet, and optical spectroscopic observations of the M8.5 dwarf TVLM513-46546, with a duration of 9 hours. These observations are part of a program to study the origin of magnetic activity in ultracool dwarfs, and its impact on chromospheric and coronal emission. Here we detect steady quiescent radio emission superposed with multiple short-duration, highly polarized flares; there is no evidence for periodic bursts previously reported for this object, indicating their transient nature. We also detect soft X-ray emission, with L_X/L_bol~10^-4.9, the faintest to date for any object later than M5, and a possible weak X-ray flare. TVLM513-46546 continues the trend of severe violation of the radio/X-ray correlation in ultracool dwarfs, by nearly 4 orders of magnitude. From the optical spectroscopy we find that the Balmer line luminosity exceeds the X-ray luminosity by a factor of a few, suggesting that, unlike in early M dwarfs, chromospheric heating may not be due to coronal X-ray emission. More importantly, we detect a sinusoidal H-alpha light curve with a period of 2 hr, matching the rotation period of TVLM513-46546. This is the first known example of such Balmer line behavior, which points to a co-rotating chromospheric hot spot or an extended magnetic structure, with a covering fraction of about 50%. This feature may be transitory based on the apparent decline in light curve peak during the four observed maxima. From the radio data we infer a large scale steady magnetic field of ~100 G, in good agreement with the value required for confinement of the X-ray emitting plasma. The radio flares, on the other hand, are produced in a component of the field with a strength of ~3 kG and a likely multi-polar configuration.Comment: 13 pages, 4 figure

    Sun-as-a-Star Spectrum Variations 1974-2006

    Get PDF
    We have observed selected Fraunhofer lines, both integrated over the Full Disk and for a small circular region near the center of the solar disk, on 1,215 days for the past 30 years. Full Disk results: Ca II K 393 nm nicely tracks the 11 year magnetic cycle based on sunspot number with a peak amplitude in central intensity of ~37%. The wavelength of the mid-line core absorption feature, called K3, referenced to nearby photospheric Fe, displays an activity cycle variation with an amplitude of 3 milli-Angstroms. Other chromospheric lines track Ca II K intensity with lower relative amplitudes. Low photosphere: Temperature sensitive CI 5380 nm appears constant in intensity to 0.2%. High photosphere: The cores of strong Fe I lines, Na D1 and D2, and the Mg I b lines, present a puzzling signal perhaps indicating a role for the 22 y Hale cycle. Solar minimum around 1985 was clearly seen, but the following minimum in 1996 was missing. This anomalous behavior is not seen in comparison atmospheric O2. Center Disk results: Both Ca II K and C I 538 nm intensities are constant, indicating that the basal quiet atmosphere is unaffected by cycle magnetism within our observational error. A lower limit to the Ca II K central intensity atmosphere is 0.040. The wavelength of Ca II K3 varies with the cycle by 6 milli-Angstroms, a factor of 2X over the full disk value. This may indicate the predominance of radial motions at Center Disk. This is not an effect of motions in plages since they are absent at Center Disk. This 11 y variation in the center of chromospheric lines could complicate the radial velocity detection of planets around solar-type stars. An appendix provides instructions for URL access to both the raw and reduced data.Comment: 38 pages with 20 figures. Accepted for publication in The Astrophysical Journa
    corecore